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Based on the control volume method, a numerical algorithm is developed for solving the problem of natural 

convective heat exchange in the earth's upper mantle. 

At the present time one of the effective numerical methods of solving boundary-value problems of heat 

exchange and hydrodynamics is the method of control volumes, which was used to solve the posed problem with 

the use of a nonuniform grid and the number of nodes nx = 101, ny = 71. 

Using the above method, the SIMPLE algorithm was developed in [I ]. A specific feature of this algorithm 

is the use of a staggered grid for calculating the velocity field. The author of the cited work analyzed in some detail 

all the advantages and disadvantages of the SIMPLE algorithm compared to other methods used to solve heat and 

mass transfer problems. Therefore, in the present work, not going into detail when deriving discrete analogs, the 

content of the SIMPLE algorithm will be represented in the form of a procedure prepared for composing an algo- 

rithmic program. 

The calculation of the flow field is performed by introducing corrections for the pressure and velocity fields: 

P = P * + P ' ;  U =  U*+ U'; V =  V* + V', (30) 

where P, U, V are the true pressure and velocity fields; P*, U*, V* are the approximate fields; P' ,  U ', V' are the 

corrections for the fields. 

Solving the problem for P ' ,  U*, V*, we obtain the true values P, U, V from the condition of equality of the 

corresponding corrections P', U ', V '  to zero. 

To integrate the nonstationary term in Eq. (21), a purely implicit scheme was used. Its use is necessitated 

by the fact that, because of the large time interval considered in the problem, it is virtually impossible to meet the 

criterion of stability of the explicit scheme: 

Ar < C,~ [2A (AX -2 + AY -2) I - I  . 

Compared to the Crank-Nicholson scheme, a purely implicit scheme allows one to obtain a more stable 
and physically plausible solution when using large time steps. 

The completely implicit scheme is characterized by the fact that within the limits of an entire time step the 

temperature is taken equal to the new value O f+AT. Therefore, the solution of Eqs. (18)-(20) for U, V, P, just like 

the coefficients p, q, A, Q, C, should be recalculated in terms of O ~+Ar in an iterative process. Let us denote the 

old (known) values of temperature at the time r by O ~ and the new (unknown) ones at the step (r + At) by Oij. 

The subscripts i, j are used to indicate the number of the nodal point: t along the X axis and j along the Y axis. A 

similar indexing will also be applied to other variables. When denoting velocity components, we will use the 

following abbreviations for convenience in programming: 
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The  main s tages  of the programming are  accomplished in the following sequence:  

1. Ass ignment  of the field of O at the time r = 0 proceeding from initial condit ion (28) and  (29) and  

ass ignment  of the posit ion of the displaced platform with the a id  of markers .  

2. Ass ignment  of the initial approximat ion  for calculat ing the fields of O, U, V at the s tep r + Ar. 

3. Ass ignment  of the field of the pressure  P*. 

4. Dete rmina t ion  of the position of the trench axis X T  at the s tep r + At.  

5. Dete rmina t ion  of the coefficients of Eqs. (18)-(21) r/, A, ,~, Q, C. 

6. Solution of the equations of motion (18) and (19) for de te rmin ing  U* and V*. 

7. Solution of the equation for P'.  

8. Calcula t ion of P. 

9. Calcula t ion of U and  V. 

10. Solution of Eq. (21) to obtain e .  

11. Represen ta t ion  of the corrected pressure  P as the new value of P*, re turn  to item 4, and  repet i t ion of 

the ent i re  p rocedure  until  a converging solution is obta ined .  

12. De te rmina t ion  of the geomet ry  of the d isplaced platform at the s tep 1: + A, .  

13. Represen ta t ion  of O as the new value of O ~ and  re turn  to item 2. 

Let us cons ider  each stage. 

1. The  ass ignment  of the field of O at r = 0 proceeding from initial condit ion (28), (29) is per formed 

according to a relat ion of the form 

1 - -  O s 
1 0__95 YI when Y./< 0 .93 ;  

1 - Y1 when Y y > 0 . 9 3  
Os 0.07 - ' 

(31) 

i = 1 . . . . .  n x ; j = 1 . . . . .  r t y .  

The  posit ion of the platform is ident i f ied by markers  a d is tance  0.002 apar t  (2 km),  with 1000 markers  

each on the upper  and lower bounda ry  and 35 markers  at a junction of platforms: 

X l =  X T + 0 . 0 0 2 ( 1 -  1) 

Y ~ = l  / = 1  . . . . .  lOOO; 

X t =  X r + 0 . 0 0 2 ( l -  1) 

Yt = 0.93 l = I001 . . . . .  2000 ; 

X 1 = X T 

YI = 0.93 + 0.002 (l - 1) l = 2001 . . . . .  2035.  

2. As the initial values of the fields of O, U ~ V,  at the step T + At ,  we use the values of o o  U o, V o found 

at the previous s tep r: 

Oij o = O  , z =  1 . . . . .  n x , j =  1 . . . . .  n y ,  

. o 
U ~ /  = U , t = I . . . . .  rz.~ - 1 , j =  1 . . . . .  n y ;  
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V; = V~i 1, i =  l, ..., nx , j =  1 . . . .  , n y -  1. 

For U" and V* at the first t ime step we take the following values: 

; U = O, i =  1 . . . . .  n x -  1, j =  1 . . . . .  ny,  

V*ij = O, i =  1 . . . . .  n x ,  j =  1 . . . . .  ny - 1. 

3. The  initial approximat ion  of the field of the pressure  P* is adopted  in the same way as in item 2: 

P*ij = pO., i =  1 . . . . .  n x ,  j =  1 . . . . .  ny ,  

except for the first t ime step: 

P ; . =  O, i =  1 . . . . .  n x ,  j =  1 . . . . .  ny.  

4. It is assumed in the formulat ion of the problem that  the trench axis moves with the velocity of the 

cont inenta l  platform. In this case the position of the t rench is de te rmined  from the following condi t ions:  

at the first t ime step 

at the remaining time steps 

0 lx 
X T = ~ y  + UcAT; 

0 
X T = X T + UcA~. 

5. The  coefficients in Eqs. (18)-(22) are  found from the formulas 

Cij = 

1 

1 - s i g n ( O i i -  0 ~  dO 

1 

Oij < O s ; 

, 0 s < Oij <-- OL; 
ii 

Oij > O i ,  

where 

t = 1 . . . . .  nx ,  j = 1 . . . . .  r/y, 

du/ ) = 6 ( O q -  | ( O q -  |  

d-O ,J (0 / .  _ Os)3 - -  ; 

{q, A,  fi, Q}u = 
p2' )'2 T,) 

1, 1, 1 , ) ' 2 (T2  - TI)  ' 

Oij _< O~ ; 

(-)Jj > |  
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Fig. 1. Con t ro l  vo lume for ca lcu la t ing  the  long i tud ina l  velocity componen t .  

i =  1 . . . . .  n x ,  j =  1 . . . . .  n r .  

6. I n t eg ra t i ng  the m o m e n t u m  equa t ion  (18) in the d i rec t ion  of the X axis  over the control  vo lume dep ic ted  

in Fig. 1, we ob ta in  a d iscre te  ana log  for f ind ing  U: 

P E U W N S 
aijUij = aij i+1 j + aij U i - I  j + a i jU i j+ l  + a i j U i j - I  + bij + (Pij - Pi+I j) A Y j  ; (32) 

S imi lar ly ,  i n t eg ra t ing  the m o m e n t u m  equa t ion  (19) in the d i rec t ion of the Y axis  over the control  vo lume 

depicted in Fig. 2, we ob t a in  a d iscre te  ana log  for f ind ing  V: 

aP vij E w N S �9 (33) 
= ai jVi+l  j + aij V i - I  j + a i j V i j + l  + a i j V i j - I  + bij + (Pij -- P i j + l )  A X i ,  

If the field of the p ressure  P is a s s igned  or is found  in some way,  t hen  we can solve the m o m e n t u m  equa t ion .  

Otherwise ,  a s s ign ing  app rox ima te  values  of the field of the p ressure  P* and  subs t i t u t i ng  them into Eqs. (32) a n d  

(33), we ob t a in  app rox ima te  values  of the field of the velocity U ~ V ~ 

T h e  discrete  ana log  for d e t e r m i n i n g  U ~ is 

P . E �9 W �9 N * S ~ 
aijUij = ai jUi+l i + aij U i - I  ] + a i jU i j+ l  + a i jUi j -1  + bij + 

:j �9 + (P  - P i + l j )  A Y j ,  t = 2 . . . . .  n x - 2 ,  j = 2 . . . . .  ny - I , (34) 

where 

1"; A YI . W A~Y. ; 
a~j = 2r]i+l j AXi+ l , all = 2rli i A X  i 

N 1 c~X l . 
aij = ) (T/U + r/i+l j + r / , j+l  + ~6+1 ++l) ~ ) ) ,  
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Fig. 2. Control volume for ca lcu la t ing  the  t r ansve r se  velocity componen t .  

s 1 diX~ 
ai i = -~ (rlij + rli+l / + r l i j - i  + rli+~ i - ~ )  c3yj_l  ; 

P E W N S 
aij = aij + aij + aij + aij ; 

(34a) 

1 * 
b i / =  -~ (rlij + 7li+l j + rlij+l + ~li+] y+l) (VT+] y - Vii ) - 

-- "4 (r] i]+ r]i+l ] + q i . i - I  "+" r]i+l j - I )  (Vi+I j - I  -- V i j - l )  �9 

Having  d e t e r m i n e d  the coefficients {aP, aE, aW, aN, aS, b}o , we ob ta in  a sys tem of a lgebra ic  equa t ions  for 

whose closure we use b o u n d a r y  condi t ions  (22) - (27) :  

i =  1,  j = 1 . . . . .  ny ;  

U ~ = O  i =  n x -  1, j =  1 . . . . .  ny ;  

t =  1 . . . . .  n x -  1,  j =  I ;  

(35) 

U c when 

U~ = 0 when  

U o when 

t = I , . . . , n ~ -  1,  

The  discrete  ana log  for d e t e r m i n i n g  V* is 

p , /..' , 
tit! Vi i = ai) Vi = 1 i 

X i < X T , 

X i = X T ,  

X~ > X. r , 

j = n_v. 

W * N * 
+ ao Vi I j + at I Vi j+l  + a"V[]--I + hij + (Pi] - P t j + l )  AX, ,  

t = 2 . . . . .  n ~  - l , j =  2 . . . . .  r l y -  2 ,  (36) 
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(P,O,f .A.O)~j,7 

where 

cp, o.q 

77. 

? // / /Acp, e, j 

,O)ij-1 

cYx~-1 

Fig. 3. Control volume�9 

E 1 6 Y / .  
a i / =  ~ (r/i/ + r/i/+l + r/i+l i + r/i+l j+l)  6 X  i , 

w 1 c3Yj 
ai]  = 4 (r / i j  + r / i j + l  + r ] i - I  ] + r / i - I f + l )  6 X i _  I 

N AXi  S AX i  
a i i =  2r/ii+ 1 AYi+ 1 , aiy 2r/iy A y  i , 

P E W N S 
aij = aij + aij + aij + aij ; (36a) 

$ 
bi/= ] (r/i/+ r/i j + l  -t- r / i+l  i "+" r / i+l  j + l )  ( U i  j + l  - U*ij) - 

1 
4 (r/ii + qiy+l + r/i-1 : + r / i - l /+1)  (U~- I /+ l  - U~-I j) + 

+ Ply + Pi j+ I O i / +  Oi/+ l AXe3 Yi' 
2 Ra 2 

Having determined the coefficients {a p, a t';, a w  a N  a S, b}i r we obtain a system of algebraic equations for 
whose closure the following boundary  conditions are used: 

. t :  1 . . . . .  nx,  i : 1 ,  

V i / = O '  i =  1 . . . . .  n x ,  j = n y -  I ,  

v ~ :  v[+~ j ,  , :  l ,  j =  l . . . . .  , , y -  I 

. 

V,y = V ' , - -1 j , , : t l x  ' J = [ . . . .  f l y  ] 
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The expressions for the corrections for the velocity components U', V" are 

U = d  P - P + l j ) ,  j = 2  . . . . .  n y - l ;  (37) 

17 v , i" i = 2 . . . . .  n x - 1 , 
V = dij (Pij - P j + l ) ,  j = 2 . . . . .  ny - 2 ,  (38) 

where d U = A Y j / a ~ ,  a e is determined from Eq. (34a), diVj = A X i / a ~ ,  a~ is determined from Eq. (36a). 

Equations (37) and (38) make it possible to find U', 1I just for internal points of the computational domain. 

According to boundary conditions (26) and (27), the values of the corrections for the velocity components U', V" 

for points lying on the boundary  of the computational domain are equal to zero. 

7. Having integrated the continuity equation (20) over the control volume shown in Fig. 3, we obtain an 

expression of the form 

(Pij - / ~ ~  A X i A  Yj [P + Pi+ l i P q  + P i - l  i j] 
Ar  + q Uij - U i_ A Yj + 2 2 1 

+ [PiJ + PiJ  +1 PiJ + ~ i j - I  ] (39) 
2 Vij - 2 Vi j -  t A X i  = O. 

Having substituted into Eq. (39) the expressions for determining the corrections for the velocity (37), (38), 

we obtain a discrete analog for determining the grid values of P': 

P ' E ' W ' 
aijPij --- aijPi+ 1 j + aq P i -  1 

i = 2 , . . . , n  x -  1 

N ' 

+ a i jP i j+ l  + aSiPi j_ l  + bij ,  

j = 2 . . . .  , ny - 1 , 

(40) 

where 

W ~ij + P i - l  j d~  l jA  Yj ;  
2 

N Pq  + P i / + l  i v S p i / +  P i j - I  d v P E W N S 
aij = 2 ' d A S  i ; aij = 2 i j - 1 A X i  ; aij = aq + aq + aq + aij ; 

o [ l bq (P - p~j) AX~A xj Pq + P,-  ~ i U~ P'J + ~ §  ~ J Uq a Yj + 
= Ar  + 2 -1 / 2 

+ [?gij 4 - P i j - I  ", Pzj §  *I 
2 - Vi] - 1 - 2 Vij A X i  " 

8. Knowing approximate values of the field for the pressure P* and corrections of the pressure P', using 

Eq. (30), we can determine the corrected values of the pressure field 

Pij = Pij 4- Pij , i = 1 . . . . .  n x , j = 1, ..., n y .  

9. Similarly to item 8, we can determine the corrected values of the velocity field components 

U~j = Utj + U j ,  t = 1 . . . . .  n x - 1 , j =  1 . . . . .  ny ;  
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Fig. 4. Isolines of the tempera ture  and heat flux distribution. 

Vi i=  Vi i+ , i =  1 . . . . .  n x ,  j =  1 . . . . .  n y -  1,  

where UI7 and VI7 are found from formulas (37), (38) with the aid of the field of corrections for the pressure  PIT 

that was calculated in i tem 7. 

10. Using a scheme with a power law, we obtain a discrete analog of the energy conservation equation (21) 

for the control volume (i, l) depicted in Fig. 3: 

P 
aqOq E w 0 

= aijOi+ 1 j + aq i-1 j 
N S 

+ a q O i j + l  + a q O i j _  l + bq,  

i = 2  . . . . .  n x - 1 ,  j = 2  . . . . .  n y - 1 ,  

(41) 

where 
w 

E D ~ ( I G I ) +  [ I _ G ,  01I ; au aij = = D~A (IPw[) + [IF.,, OI I; 

U S D~A( IGI )+  [ IF .  01]" a i j  = D,tA(IPnl) + [ I -  F~,01 1; aq= 

o o o :c,/xx, Yj 
bij = (Hij  + Dis//) AXiA Yj + aij~)ij ; aij = Ar  ; 

e E w N s o _22i~+1 / A Y / 6 X ~ ;  
aq = aij + aq + aq + aij + aij ; D e = j.q + /]'i+1 j 

Dw = '~ij + 2 i - [  j " = 2 

f w  m fiij + f i i -I  j Ui_ jAY /Cq;  F n 
2 I - 

fiij + Pi j+ l 
2 Vi jAXiCii  ; 

Pij + fill-1 
Fs - 2 Vij - I AXiCij  ; 

Pe = F e / D e  P w =  F w / D w ;  Pn = F n / D n ;  Ps = F s / D s ;  

D,.= 
2 - Vl/-I) 

+ Vii A Y/ 
2 1 

+~ Ut l+l  + Ui_l  j+l -- U i j~  I - Ul_ l  j_ I 

4 A Y  / 
+ 
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Fig. 5. Profiles of t empera tu re  and  velocity componen ts .  

+ V i + l j +  V i + t j - I  - V i - t j -  V i - l , i - t )  1 
4 A X  i Krl ij " 

Here  the opera tor  ( I A, B I ) denotes  the func t ion  of the choice of the g rea te r  of the n u m b e r s  A a n d  B; the opera tor  

A ( I P I )  deno tes  the func t ion  [10, (1 - 0 .11PI)51 ]. 

11. At this s tep we cons ide r  p rob lems  of convergence  of ca lcu la t ion  resul ts  for the p rob lem to its solut ion.  

For this purpose,  we use  several  cri teria:  

I) the field of abso lu te  errors 

6ij = I (I>NEW -- (~OLD] , I = 1 . . . . .  rlx, j = I . . . . .  try.; 

2) the field of relat ive errors  

_ NEW . OLD 

A~/ = ':Pq - cpq el)OLD , i = I . . . . .  rtx, j : l . . . . .  ny ; 
max 

3) the field of res iduals  

~17 P E W N S 
= a i f b i ] -  aijClgi+ t j -- a l i b i _  1 / -  aij~Pij+l -- aijCl)ij_l - bij , 

t = 2  . . . . .  n x -  1,  / = 2  . . . . .  n y -  1. 

Here  Oij denotes  the fields of t empera tu re ,  pressure ,  and  velocity componen t s ;  NEW a n d  OLD are  the next  a n d  

preceding  i te ra t ions  of the calculat ion.  

Check ing  for convergence  was done  in the following way: 

1) the m a x i m u m  relat ive error  Amax is d e t e r m i n e d  for a f ini te  n u m b e r  of i tera t ions;  

2) if Amax < [A]ad, then the m a x i m u m  res idual  ~max is d e t e r m i n e d ;  

3) if ~Cma x < IX'lad, then convergence  to the solut ion is reached,  and  passage to the next  i tem in the 

calcula t ion is made;  o therwise ,  the corrected pressure  field is r ep re sen t ed  as the new app rox ima t ion  for P*, a f ter  

which re tu rn  to s tage 4 with repet i t ion of the ent i re  procedure  of the calculat ion is made.  

12. To d e t e r m i n e  the geometry  of the displaced platform we use the method  of markers :  

XNE w = XOI.D + U (XoI.D, YOI.D) Ar ; 

YNI.:W = )'OLD + V (Xot.t), Y()H)) A r ,  

where  (XNEw, YNI'W) arc the coordina tes  of a marker  ,'it the timc z + At;  (Xot.tg,)'()1~l)) arc the coord ina tes  of the 

marke r  at the time t. 
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Fig. 6. Isolines of a s t ream function. 

Fig. 7. Evolution of the submers ion  of a platform: 1) T = 0; 2) ~ = 4 . 1 0 - 4 ;  3) 

= 8" 1 0 - 4 ;  4)  r = 1 . 6 - 1 0 - 3 ;  5 )  r = 3 . 2 -  10  - 3  . 

13. If the ent i re  t ime interval [0, rend] invest igated has been considered,  the computat ion is s topped;  

otherwise,  the t ime s tep Ar is taken,  and  re turn  to stage 2 is made  to obta in  the solution at the new time step. 

Using the proposed numerical  a lgor i thm,  we obta ined  results  of est imation of the thermal  s ta te  of an oceanic 

platform in the zone subduct ion.  

Apply ing  the proposed  mathemat ica l  model  (18)- (29) ,  we car r ied  out, as an example ,  calculat ions to 

de te rmine  the s t a t ionary  solution of the posed problem for a non-Newtonian  rheology (2). 

According to the adopted  hypothes is  that  the l i thospheric platform subsides  to a depth  not grea ter  than 

700 km, we in t roduced  into the computat ional  region a layer  of increased viscosity (r/= 1000) with a d imens ionless  

thickness of 0.33 that  under l ies  the mantle.  The  axis of the trench was assumed immobile.  

I so therms  of the field of t empera tu res  and  a curve of the dis t r ibut ion of the heat  flux on the upper  boundary  

of the computa t ional  region are  depicted in Fig. 4. The  tr iangle denotes  the trench axis.  From the graph of the 

change in the heat  flux it is seen that  in the zone of the trench the minimum heat  flux is observed,  which corresponds  

to submers ion  of a cold l i thospheric  platform in a hot mantle.  The  graphs  presented  in Fig. 5 show the d is t r ibut ion  

of t empera tu re  and velocity components  at the cross section X = 1.5. 

Cons ide r ing  the t empera tu re  field (Fig. 4) and the field of s t ream functions (Fig. 6) we may conclude that  

the inf luence  of p e r t u r b a t i o n s  in t roduced  by submers ion  of the d i sp laced  oceanic p la t form on the f ields of 

t empera tures  and flows in the mant le  occurs only in a region removed from the trench axis by a dis tance of the 

order  of 1 (1000 km). In this connection,  to perform fur ther  computat ions to reduce their  amount  we cons idered  a 

region with d imens ions  l x = 3000 km and ly = 1000 km. 

Using the method of markers  and  the values of tempera tures  and velocities ob ta ined ,  we calculated the 

t ra jectory of submers ion  of the oceanic platform for a s t eady-s t a t e  regime (Fig. 7). Going over to d imens iona l  

variables,  we can show that replacement  of the pat terns  corresponds  to a period of 10 million years .  

The  s t a t ionary  solution obta ined  agrees  sat isfactori ly ,  both quali tat ively and quant i ta t ively ,  with known 

exper imenta l  and  theoretical  results  of o ther  au thors  as regards  the depth of submers ion  of the platform in the 

mantle and  the law of change of the heat flux on the ea r th ' s  surface (see [1-4 ] in part I of the present  work).  
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